给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
7766 – 6677 = 1089
9810 – 0189 = 9621
9621 – 1269 = 8352
8532 – 2358 = 6174
7641 – 1467 = 6174
… …
现给定任意4位正整数,请编写程序演示到达黑洞的过程。
输入
输入给出一个(0, 10000)区间内的正整数N。
1.
6767
2222
输出
如果N的4位数字全相等,则在一行内输出“N – N = 0000”;否则将计算的每一步在
一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。
1.
7766 – 6677 = 1089
9810 – 0189 = 9621
9621 – 1269 = 8352
8532 – 2358 = 6174
2222 – 2222 = 0000
代码
#include <iostream>
#include <algorithm>
using namespace std;
bool cmp(char a, char b) {return a > b;}
int main() {
string s;
cin >> s;
s.insert(0, 4 - s.length(), '0');
do {
string a = s, b = s;
sort(a.begin(), a.end(), cmp);
sort(b.begin(), b.end());
int result = stoi(a) - stoi(b);
s = to_string(result);
s.insert(0, 4 - s.length(), '0');
cout << a << " - " << b << " = " << s << endl;
} while (s != "6174" && s != "0000");
return 0;
}