树与图的存储

树是一种特殊的图,与图的存储方式相同。
对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。

(1) 邻接矩阵:g[a][b] 存储边a->b

(2) 邻接表:可以用数组来存储邻接表,h[n]表示第n个顶点的头节点,e[n]表示第n条边的值,ne[n]表示第n条边的下一个结点编号,idx表示结点编号。


// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;
// 添加一条边a->b
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
// 初始化
idx = 0;
memset(h, -1, sizeof h);

树与图的遍历

(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心

int dfs(int u)
{
    st[u] = true; // st[u] 表示点u已经被遍历过

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j]) dfs(j);
    }
}

(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次

queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);
while (q.size())
{
    int t = q.front();
    q.pop();
    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}