结构图

image-1682298842353
image-1682298854479

代码实现

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    nn.Conv2d(1,6,kernel_size = 5,padding = 2),nn.Sigmoid(),
    nn.AvgPool2d(kernel_size = 2,stride = 2),
    nn.Conv2d(6,16,kernel_size = 5),nn.Sigmoid(),
    nn.AvgPool2d(kernel_size = 2,stride = 2),
    nn.Flatten(),
    nn.Linear(16*5*5,120),nn.Sigmoid(),
    nn.Linear(120,84),nn.Sigmoid(),
    nn.Linear(84,10))
    
X = torch.rand(size = (1,1,28,28),dtype = torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t',X.shape)

Conv2d output shape: torch.Size([1, 6, 28, 28])
Sigmoid output shape: torch.Size([1, 6, 28, 28])
AvgPool2d output shape: torch.Size([1, 6, 14, 14])
Conv2d output shape: torch.Size([1, 16, 10, 10])
Sigmoid output shape: torch.Size([1, 16, 10, 10])
AvgPool2d output shape: torch.Size([1, 16, 5, 5])
Flatten output shape: torch.Size([1, 400])
Linear output shape: torch.Size([1, 120])
Sigmoid output shape: torch.Size([1, 120])
Linear output shape: torch.Size([1, 84])
Sigmoid output shape: torch.Size([1, 84])
Linear output shape: torch.Size([1, 10])